Kernel Metho 18 . Kernel Methods and Applicationsin Bioinformatics
نویسنده
چکیده
The kernel technique is a powerful tool for constructing new pattern analysis methods. Kernel engineering provides a general approach to incorporating domain knowledge and dealing with discrete data structures. Kernel methods, especially the support vector machine (SVM), have been extensively applied in the bioinformatics field, achieving great successes. Meanwhile, the development of kernel methods has also been strongly driven by various challenging bioinformatic problems. This chapter aims to give a concise and intuitive introduction to the basic principles of the kernel technique, and demonstrate how it can be applied to solve problems with uncommon data types in bioinformatics. Section 18.1 begins with the product features to give an intuitive idea of kernel functions, then presents the definition and some properties of kernel functions, and then devotes a subsection to a brief review of kernel engineering and its applications to bioinformatics. Section 18.2 describes the standard SVM algorithm. Finally, Sect. 18.3 illustrates how kernel methods can be used to address the peptide identification 18.1 Kernel Functions .................................. 276 18.1.1 Product Features ........................ 276 18.1.2 Definition and Properties of Kernel Functions .................... 276 18.1.3 Kernel Engineering and Applications in Bioinformatics ..... 277
منابع مشابه
Discrimination of time series based on kernel method
Classical methods in discrimination such as linear and quadratic do not have good efficiency in the case of nongaussian or nonlinear time series data. In nonparametric kernel discrimination in which the kernel estimators of likelihood functions are used instead of their real values has been shown to have good performance. The misclassification rate of kernel discrimination is usually less than ...
متن کاملRemote homology detection based on oligomer distances
MOTIVATION Remote homology detection is among the most intensively researched problems in bioinformatics. Currently discriminative approaches, especially kernel-based methods, provide the most accurate results. However, kernel methods also show several drawbacks: in many cases prediction of new sequences is computationally expensive, often kernels lack an interpretable model for analysis of cha...
متن کاملThe Relative Improvement of Bias Reduction in Density Estimator Using Geometric Extrapolated Kernel
One of a nonparametric procedures used to estimate densities is kernel method. In this paper, in order to reduce bias of kernel density estimation, methods such as usual kernel(UK), geometric extrapolation usual kernel(GEUK), a bias reduction kernel(BRK) and a geometric extrapolation bias reduction kernel(GEBRK) are introduced. Theoretical properties, including the selection of smoothness para...
متن کاملApplications of Kernel Methods
In this chapter, we give a survey of applications of the kernel methods introduced in the previous chapter. We focus on different application domains that are particularly active in both direct application of well-known kernel methods, and in new algorithmic developments suited to a particular problem. In particular, we consider the following application fields: biomedical engineering (comprisi...
متن کاملDNA sequence+shape kernel enables alignment-free modeling of transcription factor binding
Motivation Transcription factors (TFs) bind to specific DNA sequence motifs. Several lines of evidence suggest that TF-DNA binding is mediated in part by properties of the local DNA shape: the width of the minor groove, the relative orientations of adjacent base pairs, etc. Several methods have been developed to jointly account for DNA sequence and shape properties in predicting TF binding affi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013